Ryhall CE Academy Calculation Policy- ADDITION

Foundation Stage

Key Vocabulary: add, more, sum, make, total, How much more is...? one more, altogether
Counting fluency: To count forwards and backwards in 1s

$$
\overbrace{21+52}^{\text {addends }}=73
$$

sum

Objective \& Strategy	Concrete	Pictorial	Abstract
To find one more than a given number up to 20.	Use physical objects to add one object to find the whole. One more than 6 is 7 Modelled using Numicon and in tens frame Modelled using counters for the Part Whole Method.	Use pictorial representations to add one object to find the whole. One more than 6 is 7 Modelled using Numicon and in tens frame Modelled using Part- Whole with numbers recorded.	Record as a written calculation. $\begin{aligned} & 6+1=7 \\ & 1+6=7 \end{aligned}$ $\begin{aligned} & 7=6+1 \\ & 7=1+6 \end{aligned}$

Ryhall CE Academy Calculation Policy- ADDITION

Ryhall CE Academy Calculation Policy- ADDITION

Year 1

$$
\overbrace{21+52}^{\text {addends }}=73
$$

Key Vocabulary: addition, add, more, and, makes, sum, total, altogether, count on, one more, two more...ten more...., how many more to make? How many more is...than...? How much more is...?

Counting fluency: To count forwards and backwards in steps of $2 s, 5 s$ and $10 s$.

Objective \& Strategy	Concrete	Pictorial	Abstract
To find one more than a given number up to 100 . To find 10 more than a given number up to 100.	Use physical objects to find one or ten more than a given number. 1 more than 25 is 26 Modelled using Numicon initially Modelled Using Base 10 Modelled using Base 10 and the part whole model 10 more than 25 is 35 Modelled using Numicon initially	Use pictorial representations to add. 1 more than 25 is 26 Modelled using the Part-Whole method with Base 10 then numbers 10 more than 25 is 35 Modelled using the Part-Whole method with Base 10 then numbers	Record as a written calculation $\begin{aligned} & 24+1=25 \\ & 1+24=25 \\ & 25=24+1 \\ & 25=1+24 \end{aligned}$ Record as a written calculation $\begin{aligned} & 25+10=35 \\ & 10+25=35 \\ & 35=25+10 \\ & 35=10+25 \end{aligned}$

Ryhall CE Academy Calculation Policy- ADDITION

\begin{tabular}{|c|c|c|c|}
\hline \& Modelled using Base 10 \& \&

\hline \& \& \&

\hline To represent \& use number bonds and related subtraction facts within 20. \& \begin{tabular}{l}
Use physical objects to find related number facts.

Number beads

2 more than 5

$5+2=7$

\qquad

 \&

Use pictorial representations to show related number facts

2 more than 5 5+2=7

 \&

Emphasis should be on the language

' 1 more than 5 is equal to 6 .'

' 2 more than 5 is 7. '

' 8 is 3 more than 5.'
\end{tabular}

\hline To add two single-digit numbers. \& Use physical objects to add two single objects to find the whole. \& | Use pictorial representations to add two single digits to find the whole. |
| :--- |
| Modelled using the Part Whole Method with numbers$5+3=8$8
 5 3 | \& Record as a written calculation.

$$
\begin{aligned}
& 5+3=8 \\
& 3+5=8 \\
& 8=5+3 \\
& 8=3+5
\end{aligned}
$$

\hline
\end{tabular}

Ryhall CE Academy Calculation Policy- ADDITION

| | Modelled using counters for the Part Whole Method. |
| :--- | :--- | :--- | :--- | :--- |
| To add a one digit and | |
| two-digit number to 20, | |
| including zero. | |

Ryhall CE Academy Calculation Policy- ADDITION

To solve one step problems that include addition.	Use physical objects to solve one step problems. Modelled using Part Whole with Base 10 $7=?+4$	Use pictorial representations to solve one step problems. Modelled using Part-Whole with numbers $7=?+4$ Modelled using the Bar Model. Children would then go on to solve it using their knowledge of addition.	Record as a written calculation $7=\ldots+4$
To start at the bigger number and count on.	Use physical objects to count on from a number. $\begin{aligned} & 12+5=17 \\ & 88 \\ & 88 \\ & 88 \\ & 88 \end{aligned}$ Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Use pictorial representations, begin to count on from a given number. Modelled using a number line Start at the larger number on the number line and count on in ones or in one jump to find the answer.	Record as a written calculation $\begin{aligned} & 12+5=17 \\ & 5+12=17 \end{aligned}$ Put the larger number in your head and count on the smaller number to find your answer.

Ryhall CE Academy Calculation Policy- ADDITION

To regroup to make 10.

Ryhall CE Academy Calculation Policy- ADDITION

Year 2
Key Vocabulary: _addition, add, more, and, makes, sum, total, altogether, double, count on, one more, two more...ten more...., one hundred more, how many more to make?

Counting fluency: To count forwards and backwards in steps of $2 s, 3 s, 4 s, 5 s$ and $10 s$.

Mental strategies

Skill	Strategy
To add 9 to a 2-digit number by adjusting.	34+9 Make the number with base ten equipment, then add 10. You then need to subtract 1 because 10 is actually one more than 9 . Children will begin to do this mentally without equipment. For $34+9$ you would first add $10 \quad 34+10=44$ then subtract $1, \quad 44-1=43$ so $34+9=43$.
To add near doubles	13+14 When numbers are very close in value, adjust one of numbers to make it the same then use knowledge of portioning to double then subtract 1 For $13+14$ = Make 13 into 14 by adding 1, double 14 by doubling 10 (20) and doubling 4 (8) and recombine (28). Then subtract the one that you added at the beginning ($28-7$) sp $13+14=27$.

Year 2 Calculation Methods

Ryhall CE Academy Calculation Policy- ADDITION

To add three 1 digit numbers to 100.	Use physical objects to add three single digit numbers to 100. Children to use concrete resources to add three 1 digit numbers. $7+2+3$ Combine to make 10 first if possible, or bridge 10 then add third digit	Use pictorial representations to add three single digit number to 100. Modelled using images Children find the numbers that make 10 to aid the adding skills. Regroup and draw representation.									Record as a written calculation Children are encouraged to add the numbers that make ten before adding the final number. $\begin{aligned} (4+7+6 & =10+7 \\ 10 & =17 \end{aligned}$
To add a two digit number and ones up to 100 .	Use physical objects to add two-digit number and ones. Children would use equipment for example, Base 10 to help them show their mathematical thinking.	Use pictorial representatives to add two-digit number and ones to 100. Use the Bar Model method to show number correspondence in order to find the whole. Using the Bar Model to add $45+4=$?									Record as a written calculation $45+4=49$ Explore related facts $\begin{aligned} & 45+4=49 \\ & 4+45=49 \end{aligned}$ $\begin{aligned} & 49-45=4 \\ & 49-4=45 \end{aligned}$
To add multiples of 10.	Use physical objects to add multiples of 10 . Using place value counters to add Children use concrete apparatus to show number sentences. Children then combine to find their answer. $20+40=60$	Use pictorial representativ Using a Hundred Square Children circle the smallest the larger multiple of 10 by $20+40=60$	ives t st num by jum \square 2 222 323 4243 525 6263 727 828 929	to add mbe mpin $3 \quad 4$ 13 14 23 24 2324 434 53 5 63 64 73 74 83 84 93 94	add er ing \square 4 5 2425 3435 4445 545 4465 3485 4495		tip he n i 7 17 27 37 $\begin{array}{\|l\|} \hline 47 \\ \hline 57 \\ \hline 67 \\ \hline 77 \\ \hline 87 \\ \hline \end{array}$		of sq ep 9 19 29 39 49 69 79 89 99	10. square. They then add of 10 .	Record as a written calculation, including missing box questions. $\begin{aligned} & 40+20=60 \\ & 20+40=60 \end{aligned}$ $\begin{aligned} & 60=40+20 \\ & 60=20+40 \end{aligned}$ $\begin{aligned} & 40+? ?=60 \\ & ? ?+20=60 \end{aligned}$

Ryhall CE Academy Calculation Policy- ADDITION

Ryhall CE Academy Calculation Policy- ADDITION

Year 3

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, increased by, double, near double, one more, two more...ten more...., one hundred more, inverse, commutative law, how many more to make? How many more is...than...? How much more is...?

Counting fluency: To count forwards and backwards in steps of $2 s, 3 s, 4 s, 5 s, 6 s, 8 s, 10 s$ and 100 s from any given number.
Mental strategies

Skill	Strategy	
* Add three small numbers.	$6+14+5$	Look for any number bonds e.g 14+6=20 then add 5 Add two number, find the total then add the final number.
*add a 3-digit number and ones, including crossing boundaries.	$\begin{aligned} & 43 \underline{2}+\underline{6} \\ & 65 \underline{4}+\underline{8} \end{aligned}$	If the ones do not cross into the tens column then add the ones only $43 \underline{2}+\underline{6}=43 \underline{8}$ If the ones cross into the tens column then use knowledge of number bond to solve. For $65 \underline{4}+8$ you would partition 8 into $\underline{6}$ and 2 then $654+6=660+2=662$.
*add a 3- digit number and tens including crossing boundaries	$\begin{aligned} & 5 \underline{34+40} \\ & 543+\underline{70} 0 \end{aligned}$	If the tens do not cross into the hundreds column then add the tens only $5 \underline{3} 4+40=5 \underline{7} 4$ If the tens cross into the hundreds column then use knowledge of number bonds to solve. For $5 \underline{43}+70$ you would partition 70 into 60 and 10 and then $543+60=$ $603+10=613$
*Add a 3-digit number and hundreds including crossing boundaries.	$\begin{aligned} & 524+300 \\ & \underline{6} 54+\underline{5} 00 \end{aligned}$	If the hundreds do not cross into the thousands column then add the hundreds only $\underline{5} 24+\underline{3} 00=824$. If the hundreds cross into the thousands column then use knowledge of number bonds to solve. For $\underline{6} 54+500$ you would partition 500 into $\underline{400}$ and 100 then do $654+400=1054+100=1154$
* Add a 2-digit number to a 3-digit tens number including crossing boundaries.	$\begin{aligned} & 540+34 \\ & 620+\underline{9} 2 \end{aligned}$	If the tens do not cross into the hundreds column then add the tens only $540+\underline{34}=5 \underline{7} 4$. If the tens cross into the hundreds column then use knowledge of number bonds. For $6 \underline{2} 0+92$ you would partition 92 into 80,10 and 2 . Then do $620+80=700+10+2=712$
Add pairs of 2-digit numbers including crossing boundaries.	$\begin{aligned} & 33+65 \\ & 2 \underline{8}+6 \underline{3} \end{aligned}$	If the tens do not cross into the hundreds column then add the tens and ones separately. For $33+65$ first add the tens $30+60=90$ then add the ones $90+3+2=95$ If the ones cross into the tens column add the tens then the ones and recombine. For $28+63$ add the tens $20+60=80$ then the ones $8+3=11$ then recombine $80+11=91$
*Add to any 3-digit number to make the next ten or hundred.	$\begin{aligned} & 254+?=260 \\ & 543+?=600 \end{aligned}$	Look for any number bonds e.g. $4+6=10$ so $254+\underline{6}=260$ Look for the nearest multiple of 10 using knowledge of number bonds $54 \underline{3}+\underline{7}=550$. Then add on in steps of 10 until you reach the multiple of $100.5 \underline{50}+\underline{50}=600$. The solution to $2 \underline{43}+\underline{57}=600$
*Add near doubles.	$\begin{aligned} & 18+16 \\ & \underline{60}+70 \end{aligned}$	Adjust one number so they are the same e.g. 16 to make it 18 by adding 2. They then use their doubling facts to double 18 then subtract $2 . \quad 18 \pm 18=36 \underline{-2}=34$ Adjust one number so they are the same e.g. 60 to make it 70 by adding 10 . They then use using their doubling facts to double 70 and then subtract 10 . $\underline{70}+70=140 \underline{-10}=130$
*Add near multiples of 10 and 100 and adjust.	$\begin{aligned} & 34+\underline{9} 9 \\ & 543+\underline{99} \end{aligned}$	When adding 9 you would add 10 then subtract 1 because 10 is actually one more than 9 . For $34+9$ you would do $34+10=44-1=43$. When adding 99 you would add 100 then subtract 1 because 100 is actually one more than 99 . For $543+99$ you would do $543+100=643-1=642$.

Ryhall CE Academy Calculation Policy- ADDITION

Year 3 Calculation Methods

Objective	Concrete	Pictorial	Abstract
To add numbers up to 3 digits, using formal written methods- no regrouping.	Use physical objects to add numbers up to 3 digits using a formal method. Modelled using Base 10 and place value counters- Add the ones first then the tens. $233+142=375$	Use pictorial representations e.g. jottings.	Written method (expanded form) 233 +142 $5(3+2)$ $\frac{70}{300}(30+40)$ $\frac{375}{}$ $\frac{\text { Condensed columnar addition }}{233}$ $+\frac{142}{375}$
To add numbers up to 3 digits, using formal written methods, with regrouping.	Use physical objects to add numbers up to 3 digits. Modelled using Base 10 and place value counters- Add the ones together first then the tens. $37+25=62$ Modelled using Base 10 Children to understand that the highest amount in each column is 9 so sometimes exchange into the next column is necessary. Children know to exchange ten 1s for a ten and ten 10s for a hundred. $243+373=616$	Use pictorial representations to add numbers up to 3 digits. $37+25$ $243+373=616$	Continue to use the expanded method until secure in understanding. Condensed columnar addition Carry below the line when bridging.

Ryhall CE Academy Calculation Policy- ADDITION

Ryhall CE Academy Calculation Policy- ADDITION

Year 4

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more, two more...ten more...., inverse, commutative law, one hundred more, how many more to make? How many more is...than...? How much more is...?

Counting Fluency: To count backwards and forwards in steps of $2 s, 3 s, 4 s, 5 s, 6 s, 7 s, 8 s, 9 s, 10 s, 11 s, 12 s, 100 s$ and 1000 s from any given starting number.

Mental Strategies

Skill	Strategy
*add a 4-digit number to ones including crossing boundaries.	$\begin{aligned} & 543 \underline{2}+\underline{6} \quad \begin{array}{l} \text { If the ones do not cross into the tens column then add the ones only } 543 \underline{2}+\underline{6}=543 \underline{8} \\ 765 \underline{4}+\underline{8} \\ \text { If the ones cross into the tens column then use knowledge of number bonds to solve. For } 765 \underline{4}+8 \text { you would partition } 8 \text { into } \underline{6} \text { and } 2 \\ \text { then } 7654+6=7660+2=7662 \text {. } \end{array} . \quad . \end{aligned}$
*add a 4-digit number to tens including crossing boundaries.	$65 \underline{2} 7+\underline{30}$ If the tens do not cross into the hundreds column then add the tens only $65 \underline{2} 7+\underline{30}=65 \underline{5} 7$. $42 \underline{5} 6+\underline{90}$ If the tens cross into the hundreds column then use knowledge of number bonds to solve. For $42 \underline{56}+90$ you would partition 90 into $\underline{50}$ and 40 and then $4256+50=4306+40=4346$.
*add a 4-digit number to hundreds including crossing boundaries.	$\mathbf{2 3}$ $\underline{7}+\mathbf{4 0 0}$ $6 \underline{5} 27+\underline{7} 00$ If the hundreds do not cross into the thousands column then add the hundreds only $2 \underline{3} 78+\underline{400}=2 \underline{7} 78$. If the hundreds cross into the thousands column then use knowledge of number bonds to solve. For $6 \underline{5} 27+700$ you would partition 700 into $\underline{500}$ and 200 then $6527+500=7027+200=7227$.
*add a 4-digit number to thousands including crossing boundaries.	$\underline{5} 267+\underline{3} 000$ If the thousands do not cross into the ten thousand column then add the thousands only $\underline{5} 267+\underline{3} 000=\underline{8} 267$. $\underline{5} 267+\underline{7000}$ If the thousands cross into the ten thousand column then use knowledge of number bonds to solve. For $\underline{5} 267+7000$ you would partition 7000 into 5000 and 2000 then $5267+5000=10,267+2000=12,267$.
*Add any pair of 3-digit multiples of ten including crossing boundaries.	
*add near multiples of 10,100 or 1000 then adjust.	$2335+\underline{59}$ Add the nearest multiple of $10(60)$ then subtract 1 because 60 is actually 1 more than $59.2335+60=2395-1=2394$. $2345+\underline{199}$ Add the nearest multiple of $100(200)$ then subtract 1 because 200 is actually 1 more than $199.2345+200=2545-1=2544$. $5423+\underline{2999}$ Add the nearest multiple of $1000(3000)$ then subtract 1 because 3000 is actually 1 more than $2999.5423+3000=8423-1=8422$.
*add near doubles of 2 or 3-digit numbers.	38+37 If the numbers are near doubles, adjust so that they are the same number. Then use the portioning method for doubling and adjust. For $38+37$, double 38 then take away 1 to make 75.
*Add to a decimal fraction with units and tenths to make the next whole number.	0.4+0.6 Use knowledge of number bonds to solve. For $0 . \underline{4}+$? $=1$, you would use your knowledge of $4+\underline{6}=10$ so you would know $0.4+0.6=1.0$.

Ryhall CE Academy Calculation Policy- ADDITION

Year 4 Calculation Methods

Ryhall CE Academy Calculation Policy- ADDITION

Year 5

 more...ten more...., one hundred more, inverse, commutative lawhow many more to make? How many more is...than...? How much more is...?

Counting Fluency: To count backwards and forwards in steps of $2 s, 3 s, 4 s, 5 s, 6 s, 7 s, 8 s, 9 s, 10 s, 11 s, 12 s, 100$ s and 1000 s from any given starting number.
Mental Strategies

Skill	Strategy	
* Add any pairs of 4-digit multiples of 100 .	$\begin{aligned} & 4 \underline{5} 00+3 \underline{2} 00 \\ & 5400+7 \underline{9} 00 \end{aligned}$	If the hundreds and thousands column do not cross into other columns then partition to add $4 \underline{5} 00+3 \underline{2} 00=7 \underline{7} 00$. If the hundreds and thousands column cross then use knowledge of number bonds to solve. For $5400+7 \underline{9} 00$ you add 5000+7000=12,000 and $\underline{9} 00+\underline{400}=\underline{1300}$ and recombine $12,000+1300=13,300$.
*add near multiples of $10,100,1000$, 10,000 then adjust, including crossing boundaries.	$\begin{aligned} & 2335+58 \\ & 2345+297 \\ & 5438++3995 \end{aligned}$	$\begin{array}{ll}\text { Add the nearest multiple of } 10(60) \text { then subtract } 2 \text { because } 60 \text { is two more than } 58 & 2335+60=2395-2=2393 . \\ \text { Add the nearest multiple of } 100(300) \text { then subtract } 3 \text { because } 300 \text { is three more than } 297 & 2345+300=2645-3=2642 . \\ \text { Add the nearest multiple of } 1000(4000) \text { then subtract } 5 \text { because } 4000 \text { is five more than } 3995 & 5438+4000=9438-5=9433 .\end{array}$
*Add tenths to a 1-digit whole number and tenths.	$\begin{aligned} & 4 . \underline{3}+0.4 \\ & 2.4+0.8 \end{aligned}$	If the tenths do not cross into ones column then add the tenths and ones separately $4.3+0.4=4.7$ If the tenths cross into the ones column then use your knowledge of number bonds to partition. For $2.4+0.8$, use your knowledge that $4+\underline{6}=10$ to partition the 0.8 into 0.6 and 0.2 so $2.4+0.6=3+0.2=3.2$
*Add two 1-digit whole numbers and tenths.	$\begin{aligned} & 4.3+3.4 \\ & 6.7+1.5 \end{aligned}$	If the tenths do not cross into ones then add the tenths and ones separately e.g. 4.3+3.4= 7.7 If the tenths cross into the ones column then use your knowledge of place value to solve. Make both numbers ten times bigger then calculate $67+15=82$. To adjust make your answer 10 times smaller $82 \div 10=8.2$ so $6.7+1.5=8.2$
*Add 2-digit numbers with tenths and hundredths.	$\begin{aligned} & 0.46+0.21 \\ & 0.36+0.84 \end{aligned}$	If the tenths and hundredths do not cross into ones then use partitioning to solve e.g. 0.46+0.21=0.67 If the tenths and/or hundredths cross into another column then use your knowledge of place value to solve. Make both numbers 100 times bigger then calculate $36+84=120$. To adjust make your answer $\underline{100 \text { times smaller } 120 \div 10=1.2 \text { so } 0.36+0.84=1.20 ~}$
*Add to a decimal fraction with units and tenths to make the next whole number.	$4.4+?=5$	Use knowledge of number bonds to solve. For $4.4+?=5$, you would use your knowledge of $4+6=10$ so know $0.4+0.6=1.0$ so $4.4+0.6=5$.
*Add near doubles of decimals.	3.8+3.7	If numbers are near doubles adjust to make them the same number. Then use the portioning method for doubling and adjust. For $3.8+3.7$, double 3.8 by doubling 3 (6), doubling 0.8 (1.6) then combine to make 7.6 then take away 0.1 to make 7.5 .

Ryhall CE Academy Calculation Policy- ADDITION

Year 5 Calculation Methods

Objective \& Strategy	Concrete	Pictorial	Abstract
To add numbers with more than 4 digits.	Modelled using place value counters Children to understand that the highest amount in each column is 9 so sometimes exchange into the next column is necessary. Children understand that they can exchange ten 1 s for a ten, ten 10s for a hundred, ten 100s for a thousand, ten 1000s for a ten thousand. Children understand multi exchange where exchange is needed in more than one column. $52,546+34,375=86,921$	Using different pictorial representations for the values, the children show exchanges and understand the place value. This leads to greater understanding when using the formal written method as the children know what the digit below the line represents.	Record as a written calculation Condensed columnar addition Carry below the line. Children to solve calculation involving multiple exchanges.
To add numbers with up to two decimal places.	Use physical objects to add numbers with up to two decimal places. Modelled using place value charts and counters $2.37+91.79=94.16$	Use pictorial representations to add numbers with up to two decimal places. Children will use jottings to help them represent the calculation. They add each column starting first from the furthest column to the right and carry below the line when needed. $2.37+81.79=$ 84.16	Record as a written calculation Condensed columnar addition Children should line decimals up correctly, including examples when there are different number of decimal places.

Ryhall CE Academy Calculation Policy- ADDITION

Year 6

Key Vocabulary: addition, columnar addition. add, more, and, makes, sum, total (of), count on, altogether, extra, in all, combined, increased by, double, near double, one more, two more...ten more...., one hundred more, inverse, commutative law, how many more to make? How many more is... than...? How much more is...?

Counting Fluency: To consolidate counting backwards and forwards in steps of $2 s, 3 s, 4 s, 5 s, 6 s, 7 s, 8 s, 9 s, 10 s, 11 s, 12 s, 100 s, 1000$ s and 10,000 s from any starting number.
Mental Strategies

Skill	Strategy	
Reconsolidate all strategies from Y4 and 5.		
*Add a 4-digit multiple of 100 to a 4-digit number.	If the hundreds do not cross into the thousands column then add the hundreds only $6365+3400=9765$. If the hundreds cross into the thousands column then use knowledge of place value to partition. For $5432+1800$ you partition 1800 into 1000 and $\underline{600}$ and 200. Then you would do $5432+1000=6432$ then $6 \underline{4} 32+\underline{600}=7032+200=7232$.	
*Add large numbers.	$455,000+324,000$ If the hundreds and thousands do no $455,000+324,000=879,000$ $543,000+387,000$ If the hundreds, thousands or ten th For $543,000+387,000$ you would do and recombine $800,000+120,000+10$	into the thousands column then use partitioning to solve cross into another column then use knowledge of place value to partition. $0+300,000=800,000$ then $40,000+80,000=120,000$ and $3,000+7,000=10,000$ 930,000
*add near multiples of $0.01,0.1,10,100$, 1000 then adjust, including crossing boundaries.	$3.9+4.4$ Add the nearest whole number (4) then $2.56+\underline{4.98}$ Add the nearest whole number (5) then	act 0.1 because 4 is actually 0.1 more than 3.9 so $4.4+4=8.4-\underline{0.1}=8.3$ act 0.02 because 5 is actually 0.02 more than 4.98 so $2.56 \underline{+5}=7.56 \underline{-0.02}=7.54$
*Add several 1-digit whole numbers and tenth.	$\begin{array}{ll}3.4+2.8+3.5 & \begin{array}{l}\text { Use knowledge of place value and part } \\ \text { Then adjust to make your answer } 10+\end{array}\end{array}$	to solve. Make each decimal fractions 10 times bigger and do $34+28+35=97$ aller $97 \div 10=9.7$ so_ $3.4+2.8+3.5=9.7$
*Add decimals with different numbers of places.	$\begin{array}{ll}0.45+2.3 & \text { Add by partitioning using your knowledge } \\ & \text { hundredths } 0.05+0=0.05 \text { and recomb }\end{array}$	ce value. First add the ones $0+2=2$, then the tenths $0.4+0.3=0.7$ then the $0.7+0.05=2.75$
*Add to any number with two decimal places to make the next tenth or whole number.	$2.34+?=2.4$ Use knowledge of number bonds to 10. $6 . \underline{35}+?=7$ Use knowledge of number bonds to 100.	$\begin{aligned} & 34+\underline{6}=40 \text { so } 2.34+0 . \underline{6}=2.4 \\ & \underline{35}+65=100 \text { so } 6 . \underline{35}+0.65=7 \end{aligned}$
*Add to any number with three decimal places to make the next tenth or whole.	$4.245+?=5 \quad$ Use knowledge of place value to help $3 . \underline{256}+$? $=3.3$ Use knowledge of place value	$\begin{aligned} & \underline{245}+\underline{755}=1000 \text { so } 4.245+0.755=5 \\ & 256+\underline{44}=300 \text { so } 3.256+0.044=3.3 \end{aligned}$

Ryhall CE Academy Calculation Policy- ADDITION

Objective	Concrete	Pictorial	Abstract
To add several numbers of increasing complexity.	Modelled using Base 10 Children to understand that the highest amount in each column is 9 so sometimes exchange into the next column is necessary. Children understand that they can exchange ten 1s for a ten, ten 10s for a hundred, ten 100s for a thousand, ten 1000s for a ten thousand. Children understand multi exchange where exchange is needed in more than one column. $52,546+34,375=86,921$	Using different pictorial representations for the values, the children show exchanges and understand the place value. This leads to greater understanding when using the formal written method as the children know what the digit below the line represents.	Record as a written calculation Condensed columnar addition Children to solve calculation involving multiple exchanges and numbers with different numbers of digits.
To add numbers with increasing complexity, including adding money, measure.	Use physical objects to add numbers with increasing complexity, including adding money, measure Using counters and a place value chart$1.30+80.79=82.09$tens ones 0 tenths hundredths 	Use pictorial representations to add numbers with increasing complexity, including adding money, measure Using jottings and place value chart. Children will use jottings to help them represent the calculation. They add each column starting first from the furthest column to the right and carry below the line when needed. $2.37+81.79=84.16$	Children add several decimals with different numbers of decimal places by lining up digits and inserting zeros as place holders.

